当前位置:主页 > 仪器原理

x射线的产生原理?

时间:2024-06-10 00:11|来源:未知|作者:admin|点击:0次

一、x射线的产生原理?

产生X射线的最简单方法是用加速后的电子撞击金属靶。

撞击过程中,电子突然减速,其损失的动能(其中的1%)会以光子形式放出,形成X光光谱的连续部分,称之为制动辐射。

通过加大加速电压,电子携带的能量增大,则有可能将金属原子的内层电子撞出。于是内层形成空穴,外层电子跃迁回内层填补空穴,同时放出波长在0.1纳米左右的光子。

由于外层电子跃迁放出的能量是量子化的,所以放出的光子的波长也集中在某些部分,形成了X光谱中的特征线,此称为特性辐射。

电子的韧制辐射,用高能电子轰击金属,电子在打进金属的过程中急剧减速,按照电磁学,有加速的带电粒子会辐射电磁波,如果电子能量很大,比如上万电子伏,就可以产生x射线。

原子的内层电子跃迁也可以产生x射线,量子力学的理论,电子从高能级往低能级跃迁时候会辐射光子,如果能级的能量差比较大,就可以发出x射线波段的光子。

二、X射线的产生原理?

X射线产生的原理是用加速后的电子撞击金属靶,撞击过程中电子突然减速,其损失的动能(以光子形式放出,形成X光光谱连续部分。

通过加大加速电压,电子携带的能量度增大将金属原子的内层电子撞出。于是内层形成空穴,外层电子跃迁回内层填补空穴,同时放出波长在0.1纳米左右的光子。

三、射线产生原理?

产生X射线的最简单方法是用加速后的电子撞击金属靶。

撞击过程中,电子突然减速,其损失的动能(其中的1%)会以光子形式放出,形成X光光谱的连续部分,称之为制动辐射。

通过加大加速电压,电子携带的能量增大,则有可能将金属原子的内层电子撞出。于是内层形成空穴,外层电子跃迁回内层填补空穴,同时放出波长在0.1纳米左右的光子。

由于外层电子跃迁放出的能量是量子化的,所以放出的光子的波长也集中在某些部分,形成了X光谱中的特征线,此称为特性辐射。

电子的韧制辐射,用高能电子轰击金属,电子在打进金属的过程中急剧减速,按照电磁学,有加速的带电粒子会辐射电磁波,如果电子能量很大,比如上万电子伏,就可以产生x射线。

原子的内层电子跃迁也可以产生x射线,量子力学的理论,电子从高能级往低能级跃迁时候会辐射光子,如果能级的能量差比较大,就可以发出x射线波段的光子。

四、ct机产生x射线的原理?

CT机产生X射线的过程原理是通过高压发生器提供一个稳定的直流高压产生x射线,是用X线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器转为数字信号,输入计算机处理,经过图象重建构成CT图像。

五、X射线衍射线产生条件?

当X射线以掠角θ(入射角的余角)入射到某一点阵晶格间距为d的晶面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布拉格方程简洁直观地表达了衍射所必须满足的条件。   布拉格方程:   2d sinθ=nλ   式中λ为X射线的波长,n为任何正整数。

六、x射线探测器产生的原理?

        x射线探测器是一种将X射线能量转换为可供记录的电信号的装置。 

        其原理是:当接收到射线照射,产生与辐射强度成正比的电信号。通常探测器所接受到的射线信号的强弱,取决于其探测部位的密度。密度高的部位,吸收x射线较多,探测器接收到的信号较弱;密度较低的部位吸收x射线较少,探测器获得的信号较强。不同部位对x射线吸收值不同的性质可用组织的吸收系数m来表示,所以探测器所接收到的信号强弱所反映的是被探测物不同的m值,从而对组织性质做出判断。 

      X射线探测器一般分为气体探测器、闪烁探测器、半导体探测器等类型。被广泛应用于应用于核医学、生物学、天体物理、凝聚态物理和等离子体物理等领域。

七、两种x射线的产生原理?

X射线的产生分两种:

1、电子的韧制辐射,用高能电子轰击金属,电子在打进金属的过程中急剧减速,有加速的带电粒子会辐射电磁波,电子能量很大,就可以产生x射线。

2、原子的内层电子跃迁也可以产生x射线,电子从高能级往低能级跃迁时候会辐射光子,能级的能量差比较大,就发出x射线波段的光子。 X射线是一种波长极短,能量很大的电磁波,X射线的波长比可见光的波长更短(约在0.001~10纳米,医学上应用的X射线波长约在0.001~0.1 纳米之间),它的光子能量比可见光的光子能量大几万至几十万倍。 由德国物理学家W.K.伦琴于1895年发现,故又称伦琴射线。

八、电子射线产生原理?

应该有这么几种方式吧:

1、电子激发。大量高速电子轰击样品原子,产生电子跃迁,放出X射线,这个对样品的要求较高。

2、质子激发。这种激发方式的射程短,但穿透力强,平常很少用。

3、X射线管。这是现在最常见到的。利用高压电场,让高速运动的电子轰击阳极靶材,产生电子跃迁,放出初级X射线。再用初级X射线去照射样品,产生电子跃迁,放出次级X射线。这个是现在工业分析及科研领域较常见的检测方式。

4、放射性同位素做为射线源。这个不太常见,只有一些国产的老式分析仪器会采用这个方式。

九、r射线产生原理?

X射线与日r射线虽然都属电磁波,但它们是有区别的,产生的机理不同,X射线是原子的内层电子受激辐射的,而r射线是原子核受激辐射的。二者的光子能量不同,r射线比X射线高,相应其频率高,波长短。二者都有贯穿本领,但是本质区别是很大的。R射线的穿透力更强。

r射线的危害有哪些

r射线具有极强的穿透本领。人体受到r射线照射时,r射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰。

十、伽马射线产生原理?

γ射线是因核能级间的跃迁而产生,原子核衰变和核反应均可产生γ射线。当γ射线通过物质并与原子相互作用时会产生光电效应、康普顿效应和正负电子对三种效应。原子核释放出的γ光子与核外电子相碰时,会把全部能量交给电子,使电子电离成为光电子,此即光电效应。由于核外电子壳层出现空位,将产生内层电子的跃迁并发射X射线标识谱。高能γ光子(>2兆电子伏特)的光电效应较弱。γ光子的能量较高时,除上述光电效应外,还可能与核外电子发生弹性碰撞,γ光子的能量和运动方向均有改变,从而产生康普顿效应。当γ光子的能量大于电子静质量的两倍时,由于受原子核的作用而转变成正负电子对,此效应随γ光子能量的增高而增强。γ光子不带电,故不能用磁偏转法测出其能量,通常利用γ光子造成的上述次级效应间接求出,例如通过测量光电子或正负电子对的能量推算出来。此外还可用γ谱仪(利用晶体对γ射线的衍射)直接测量γ光子的能量。由荧光晶体、光电倍增管和电子仪器组成的闪烁计数器是探测γ射线强度的常用仪器。

通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。γ射线对细胞有杀伤力,医疗上用来治疗肿瘤。

Copyright © 2024 温变仪器 滇ICP备2024020316号-40