当前位置:主页 > 仪器原理

红外光谱仪工作原理?

时间:2024-06-20 21:01|来源:未知|作者:admin|点击:0次

一、红外光谱仪工作原理?

红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。

对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱

二、ftir红外光谱仪原理?

其基本原理是:

经典光学理论:所有物质都能够在特定波长下吸收、传透或反射光线。

红外辐射与化学键振动:当物质暴露在红外辐射(不同波长的红外光)下时,化学键会发生振动,振动的形式和频率与化学键的性质和特征有关。

进行FTIR分析:FTIR红外光谱仪利用干涉仪的原理,通过将反射/透射/吸收的光线分离储存在干涉仪的储存器中,并与外部的真空光束(参考光束)混合进行干涉,从而输出波形。

解读FTIR光谱:FTIR光谱图可以通过检测样品中吸收的红外辐射来识别化学键,其特点为在不同频率下产生比较明显的峰值。根据样品的光谱图,我们可以确定样品中化合物的官能团、分子结构等信息。

总的来说,FTIR红外光谱仪通过检测红外辐射被样品中的分子吸收时对样品进行分析。借助仪器的高准确性和快速特性,可以用于化学、生物、医学等领域的分析、研究和检测。

三、ftir atr红外光谱仪原理?

红外测试一般主要分为溴化钾压片法、ATR及液体样品池方法。

溴化钾压片方法适合粉末样品,此方法中涉及溴化钾带入的杂峰影响,所以我们一般选择扣除溴化钾背景和空气背景方法(具体方法客户可以指定),扣除溴化钾背景可以尽量避免溴化钾引入的杂峰(主要因为溴化钾极易吸水,羟基峰影响非常明显)。

ATR方法适合各种固体,块状薄膜,液体等无法研磨成粉末样品,该方法优势是无其它杂质峰干扰,但是缺点为有些样品峰会比较弱。

液体样品池法,一般适合于一些液体样品测试,如果采用的是溴化钾窗片,样品里不能含水,不能跟溴化钾反应。

四、如何用红外光谱仪鉴定翡翠?

天然翡翠在2600-3200cm-1区间透过率好,多不存在吸收峰;

而充填处理翡翠因含有高分子聚合材料,会有特定的吸收峰。

根据这个规律,将翡翠放在红外光谱仪上,观察电脑屏幕上出现的曲线。

A货翡翠的这个区域是平滑的,而C货曲线图有明显波动,以此可判断翡翠是否经过处理。

五、红外光谱仪的原理及应用?

红外光谱仪的原理是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。

对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。

六、单色仪 红外光谱仪设计原理?

红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。

对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。

七、傅里叶变换红外光谱仪的原理是什么?

原理是通过测量经过红外吸收的干涉图,并对其进行傅立叶积分变换来获得被测物质的红外波段的光谱图,从而可以对该物质的元素,组分和分子结构进行分析和确

八、傅立叶变换红外光谱仪的原理是什么?

傅立叶变换红外光谱仪的原理是通过测量经过红外吸收的干涉图,并对其进行傅立叶积分变换来获得被测物质的红外波段的光谱图,从而可以对该物质的元素,组分和分子结构进行分析和确定。

和传统的色散型光谱仪相比,傅立叶变换红外光谱仪可以获得较好的信噪比和分辨率。目前学校和研究所里使用的红外谱仪基本上都是傅立叶变换红外谱仪(FTIR).

九、红外光谱仪组成?

红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。

对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。

十、光谱仪原理?

光谱仪应用原理分析:

1.

手持式光谱仪和能量色散X射线荧光光谱仪原理基本一致:X-射线荧光分析仪(XRF)是一种较新型的可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即X-荧光)。X荧光被探测器探测到后经过放大,数模转换输入到计算机,计算机后通过计算,才能得出测试样品的结果。 手持式光谱仪和能量色散X射线荧光光谱仪主要应用金属材料,土壤重金属,矿石元素品位,ROHS,考古文物等等元素成分分析。

2.

直读光谱仪原理:为发射光谱仪,主要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量分析的仪器。样品在激发光源下被激发, 其原子和离子跃迁发射出光, 进入光学系统被色散成元素的光谱线. 对选定的内标线和分析线的强度进行测量, 根据元素谱线强度与被测元素的浓度的相互 关系,采用持久曲线法和控制试样法得到试样中被测元素的含量. 直读光谱仪主要应用于,钢铁,合金钢等金属元素分析。

3.

拉曼光谱仪原理:是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。 拉曼光谱仪主要应用于,危险化学品,爆炸物,毒品,考古,药品原材料等分子结构成分分析。

4.

激光诱导击穿光谱仪原理:将激光器产生的高功率脉冲激光束聚焦于样品表面,样品中的原子被激发,形成高温等离子体火花,被激发的原子和离子在退激过程中发射原子和离子的特征谱线,用光谱仪测量原子特征谱线的波长(紫外到近红外)和强度,对元素进行定性或定量分析。

Copyright © 2024 温变仪器 滇ICP备2024020316号-40