当前位置:主页 > 检测仪器

高相液相检测器的原理?

时间:2024-07-05 00:13|来源:未知|作者:admin|点击:0次

一、高相液相检测器的原理?

高效液相色谱法的原理是以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测。

高效液相色谱法有“四高一广”的特点:

①高压:流动相为液体,流经色谱柱时,受到的阻力较大,为了能迅速通过色谱柱,必须对载液加高压。

②高速:分析速度快、载液流速快,较经典液体色谱法速度快得多,通常分析一个样品在15~30分钟,有些样品甚至在5分钟内即可完成,一般小于1小时。

③高效:分离效能高。可选择固定相和流动相以达到最佳分离效果,比工业精馏塔和气相色谱的分离效能高出许多倍。

④高灵敏度:紫外检测器可达0.01ng,进样量在μL数量级。

⑤应用范围广:百分之七十以上的有机化合物可用高效液相色谱分析,特别是高沸点、大分子、强极性、热稳定性差化合物的分离分析,显示出优势。

扩展资料

高效液相色谱还有色谱柱可反复使用、样品不被破坏、易回收等优点,但也有缺点,与气相色谱相比各有所长,相互补充。高效液相色谱的缺点是有“柱外效应”。

在从进样到检测器之间,除了柱子以外的任何死空间(进样器、柱接头、连接管和检测池等)中,如果流动相的流型有变化,被分离物质的任何扩散和滞留都会显著地导致色谱峰的加宽,柱效率降低。高效液相色谱检测器的灵敏度不及气相色谱。

空间排阻色谱法以凝胶(gel) 为固定相。它类似于分子筛的作用,但凝胶的孔径比分子筛要大得多,一般为数纳米到数百纳米。

溶质在两相之间不是靠其相互作用力的不同来进行分离,而是按分子大小进行分离。分离只与凝胶的孔径分布和溶质的流动力学体积或分子大小有关。试样进入色谱柱后,随流动相在凝胶外部间隙以及孔穴旁流过。

在试样中一些太大的分子不能进入胶孔而受到排阻,因此就直接通过柱子,首先在色谱图上出现,一些很小的分子可以进入所有胶孔并渗透到颗粒中,这些组分在柱上的保留值最大,在色谱图上最后出现。

二、液相紫外检测器波长范围?

波长通常在200nm至000多套0nm的范围内。该装置的波长验证使用覆盖该频带的波长验证方法:

  A:紫外探测器的波长精度通过氙灯特征峰(486.1nm和656nm)波长处的大吸收值检测。紫外线探测器。方法:高效液相色谱仪在静态条件下接通探测器的电源,使氙灯预热30分钟,高效液相色谱仪的自动扫描功能界面设置在探测器操作面板上。探测器自动扫描200nm至700nm,测量重复三次。记录氙灯的特征波长以满足极限要求。

  B:使用标准溶液的检测器波长精度的验证方法:方法:在静态条件下,在检测器电源被预热并稳定后,设置检测器扫描带,并将水溶液置于石英比色皿中。将比色皿放置在检测器的测量光路中,用于在(200nm-400nm)波段中进行空白扫描;然后将标准溶液倒入比色皿中并置于检测器的测量路径中200nm至400nm。扫描时,标准溶液的标准波长为205nm,273nm,记录标准溶液的波长测量结果,相应波长与标准溶液波长之差为波长指示误差。高效液相色谱仪的紫外光检测器的,每个波长测量三次,大值与小值之差为波长重复性误差。

  C:使用标准波长滤波器(标准氧化镱滤光片)检查探测器的波长准确度:方法:如上所述打开探测器电源以稳定预热,设置探测器扫描带,首先是空气,并且进行200nm至500nm的空白扫描。然后,将标准氧化钇滤光器放置在检测器的光路中,扫描200nm至500nm的波长带,以记录对应于每个被氧化的带的大吸收值的波长值。钬滤波器的标准波长之间的差异是波长指示误差,并且每个波长被重复测量三次,其中大值和小值之间的差是波长重复性误差。

三、高效液相色谱RID检测器,基线不稳的原因有哪些?

示差检测器很容易不稳定,因为它的参比池和样品池之间很容易有产生波动差。它的高灵敏度对周围环境的要求很高,对温度,对噪音,对电信号都会比较敏感。尤其是温度,如果不稳定的话,基线会一直漂移,所以最好控制柱温。

通常在开始实验之前,先要长时间地冲洗参比池,然后在参比池和样品池之间切换,基线呈台阶状就算是稳定了。

如果,你的流动相里有易挥发的试剂,那么做实验的中间可以在切换到参比池,冲洗半小时。

四、高效液相色谱主要检测器类型?

用于高效液相色谱仪的检测器包括:紫外吸收检测器、二极管阵列检测器、荧光检测器、差分折射率检测器、蒸发光散射检测器、质谱检测器等。

下面是对彼此的简要介绍。

高效液相色谱仪的光学类检测器

高效液相色谱仪的紫外吸收检测器广泛用于高效液相色谱,它需要对所测试的样品组分进行UV吸收,并且是选择性检测器。

高效液相色谱仪的二极管阵列探测器(DAD)是20世纪80年代出现的一种光学多通道探测器,扫描各洗脱组分的色谱图,经计算机处理,得到了色谱图与色谱图相结合的三维图谱。吸收光谱用于定性分析(以确定其是否为单一纯物质),色谱用于定量分析,并常用于复杂样品(如生物样品、中草药)的定性和定量分析。

五、液相色谱荧光检测器常用波长?

液相色谱荧光检测器波长

高效液相色谱仪用检测波长测定时一般都选择在对样品有最大吸收的波长下进行,以获得最大的灵敏度和抗干扰能力。但应特别注意在选择测定波长时,必须考虑到所使用的流动相的紫外吸收性质。也就是说,使用紫外-可见光检测器时,溶剂不应吸收测定波长的紫外光,样品测定波长应当在溶剂紫外吸收波长上限以上。

六、液相示差检测器的原理?

只要样品组分与流动相的折光指数不同,就可被检测,二者相差愈大,灵敏度愈高,在一定浓度范围内检测器的输出与溶质浓度成正比。示差折光检测器原理示差检测器是连续检测样品流路与参比流路间液体折光指数差值的检测器,是根据折射原理设计的,属偏转式类型。

七、高效液相色谱检测器波长选择问题?

HPLC中,波长选择是依据待测物质最大吸收波长来决定的。 通常,高效液相色谱检测器为紫外检测器,所以HPLC中波长的选择和紫外波长选择一致,均为选择最大吸收波长,这样能保证检测的灵敏度和响应值最高。

八、高效液相色谱通用的检测器是?

常用检测器有紫外吸收、荧光、示差折光、蒸发光散射检测器等。

1  紫外吸收检测器(UV)

紫外吸收(UV)检测器是目前HPLC应用广泛的检测器。

2  荧光检测器(FID)

荧光检测器(fluorescence detector, FD)是一种高灵敏度、有选择性的检测器,可检测能产生荧光的化合物

 3 示差折光检测器(RID)

示差折光检测器(differential refractive Index detector, RID)是一种通用的浓度检测器,对所有溶质都有响应。

4 蒸发光散射检测器(ELSD)

蒸发光散射检测器(evaporative light—scattering detector,ELSD)是20世纪90年代出现的新型通用型质量检测器,它适用于检测挥发性低于流动相的组分,主要用于检测糖类、高级脂肪酸、磷脂、维生素、氨基酸、甘油三酯及甾体等,并在没有标准品和化合物结构参数未知的情况下检测未知化合物

九、液相示差检测器操作规程?

示差检测器操作

一、操作步骤

1、按shift 和8R flow 以冲洗参比池流路20min,此时,R flow灯亮。

2、反复开关R flow数次以消除池内气泡。

3、关闭R flow,等待至基线稳定。

4、当blance value大于50时,按blance键平衡光路。(如小于50,不必此操作。)

5、等待基线稳定后,开始分析。

二、要得到稳定基线,应注意:

1、保持室温恒定

2、溶剂脱气以减少溶剂内溶解的气体

3、连接大内径废液管以降低检测器出口背压

系统内无在线脱气装置时,一般使用0.3 mmid废液管已产生一定背压而避免生成气泡,但有可能对基线稳定性产生影响。故一般建议配备在线脱气装置且使用大内径废液管。

十、常见的液相色谱柱检测器有哪几种?

光学类检测器

1、紫外吸收检测器(UVD)是目前HPLC中应用最广泛的检测器。它的主要特点是灵敏度高,线性范围宽,对流速和温度变化不敏感,可用于梯度洗脱。它要求被检测样品组分有紫外吸收,属于选择性检测器。

2、二极管阵列检测器(PDAD)是20世纪80年代才出现的一种光学多通道检测器,它可以看作是UVD的一个分支。在对每个洗脱组分进行光谱扫描,经计算机处理后,得到光谱和色谱结合的三维图谱。其中吸收光谱用于定性(确证是否是单一纯物质),色谱用于定量,常用于复杂样品(如生物样品、中草药)的定性定量分析。

3、荧光检测器(FLD)同样属于选择性检测器,其灵敏度在目前常用的HPLC检测器中是最高的,应用也较多,仅次于UVD。它适用于能激发荧光的化合物。很多与生命科学有关的物质,如氨基酸、胺类、维生素、甾族化合物及某些代谢药物都可以用荧光法检测。荧光检测器在生物样品痕量分析中很有用,尤其在用荧光衍生后,可以检测很微量的氨基酸和肽。

通用型检测器

1、示差折光检测器(RID)是一种通用型检测器,只要被测组分与洗脱液的折光指数有差别就可使用。生命科学中常遇到各类糖类化合物,没有紫外吸收,一般常用示差折光检测器。它的通用性比UVD广,但灵敏度要低,对温度变化敏感,并与梯度洗脱不相容,因而限制了它的使用。

2、蒸发光散射检测器(ELSD)也是一种通用型的检测器,可检测挥发性低于流动相的任何样品,而不需要样品含有发色基团。ELSD的响应值与样品的质量成正比,因而能用于测定样品的纯度或者检测未知物。ELSD灵敏度比RID高,对温度变化不敏感,基线稳定,可用于梯度洗脱。现在ELSD已被广泛应用于碳水化合物、类脂、脂肪酸和氨基酸、药物以及聚合物等的检测。

3、质谱检测器(MSD)是另一种通用型检测器,在灵敏度、选择性、通用性及化合物的分子量和结构信息的提供等方面都有突出的优点。但它的昂贵操作费用和复杂性限制了它的推广应用。

希望对你有所帮助。

Copyright © 2024 温变仪器 滇ICP备2024020316号-40